Tag Archives: speed air compressor

China supplier Gardner Denver Gd Oil Lubricated Screw Air Compressor Variable Speed VSD 30kw FM30RS FM 30kw FM30RS-7A FM30RS-8A FM30RS-10A FM30RS-13A air compressor portable

Product Description

Oil Lubricated Screw Compressors FM07RS-FM75RS Series Variable Speed VSD

Efficient Compact Reliable

FM Series small air compressors are designed to provide you with excellent quality main engines imported from Germany, with simple and convenient after-sales maintenance design.

Design philosophy focused on details

• Hard pipe connection for both hard and soft pipelines
• Materials such as Teflon increase the stability of the overall unit running

Efficient, stable, customizable according to specific needs

• FM07-22: TEFC, with standard IP55 rating
• FM30-75: ODP, with IP23 / IP54 ratings optional
• (IP 54 400V / 50Hz optional)

Filtering system

Efficient, high-quality, micro-oil air quality
• With nanometer filter materials, filter accuracy of up to 1μ
• Improve air quality, oil content less than 2 ppm
• New pre-filtration system reduces the air filter load
• Increase the operating life of the overall unit under complex conditions

Compact design, imported main engine, high efficiency and energy saving
• The direct drive by air end and motor of FM30-75 realizes efficient conversion of high CHINAMFG torque that protects the air end from the impact of external forces, thereby enabling more efficient and more stable operation.
• The whole series can reach national Level I, or Level II energy efficiency.

Technical Data for FM07RS-FM75RS Series Variable Speed VSD

Model Number Pressure(Bar) Power(kW) FAD1 (m3/min) Noise Level² dB(A) Drive Weight (kG) Dimensions              L x W x H (mm)
FM07RS-7A 7 7.5 0.45-1.13 70 Belt 225 667×630×1050
FM07RS-8A 8 7.5 0.46-0.98 70 Belt 225 667×630×1050
FM07RS-10A 10 7.5 0.43-0.95 70 Belt 225 667×630×1050
FM07RS-13A 13 7.5 0.45-0.77 70 Belt 225 667×630×1050
FM11RS-7A 7 11 0.58-1.53 70 Belt 234 667×630×1050
FM11RS-8A 8 11 0.52-1.41 70 Belt 234 667×630×1050
FM11RS-10A 10 11 0.51-1.39 70 Belt 234 667×630×1050
FM11RS-13A 13 11 0.49-1.07 70 Belt 234 667×630×1050
FM15RS-7A 7 15 1.06-2.64 73 Belt 360 787×698×1202
FM15RS-8A 8 15 1.01-2.46 73 Belt 360 787×698×1202
FM15RS-10A 10 15 0.95-2.2 73 Belt 360 787×698×1202
FM15RS-13A 13 15 0.89-1.73 73 Belt 360 787×698×1202
FM18RS-7A 7 18.5 1.37-3.15 74 Belt 380 787×698×1202
FM18RS-8A 8 18.5 1.35-2.96 74 Belt 380 787×698×1202
FM18RS-10A 10 18.5 1.29-2.66 74 Belt 380 787×698×1202
FM18RS-13A 13 18.5 1.31-2.25 74 Belt 380 787×698×1202
FM22RS-7A 7 22 1.35-3.49 74 Belt 395 787×698×1202
FM22RS-8A 8 22 1.05-3.23 74 Belt 395 787×698×1202
FM22RS-10A 10 22 0.94-3.05 74 Belt 395 787×698×1202
FM22RS-13A 13 22 0.98-2.59 74 Belt 395 787×698×1202
FM30RS-7A 7 30 1.88-5.26 72 Direct 750 1554×894×1505
FM30RS-8A 8 30 1.85-5.23 72 Direct 750 1554×894×1505
FM30RS-10A 10 30 1.81-4.52 72 Direct 750 1554×894×1505
FM37RS-7A 7 37 1.84-6.24 72 Direct 830 1554×894×1505
FM37RS-8A 8 37 1.84-6.21 72 Direct 830 1554×894×1505
FM37RS-10A 10 37 1.75-5.01 72 Direct 830 1554×894×1505
FM45RS-7A 7 45 2.83-7.57 76 Direct 900 1554×894×1505
FM45RS-8A 8 45 3.73-7.51 76 Direct 900 1554×894×1505
FM45RS-10A 10 45 2.25-6.12 76 Direct 900 1554×894×1505
FM55RS-7A 7 55 2.44-10.34 75 Direct 1170 2004×1179×1605
FM55RS-8A 8 55 2.37-10.07 75 Direct 1170 2004×1179×1605
FM55RS-10A 10 55 2.24-9.14 75 Direct 1170 2004×1179×1605
FM75RS-7A 7 75 1.82-13.5 78 Direct 1220 2004×1179×1605
FM75RS-8A 8 75 1.76-12.9 78 Direct 1220 2004×1179×1605
FM75RS-10A 10 75 1.65-11.91 78 Direct 1220 2004×1179×1605


Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Structure Type: Closed Type
Installation Type: Stationary Type


air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China supplier Gardner Denver Gd Oil Lubricated Screw Air Compressor Variable Speed VSD 30kw FM30RS FM 30kw FM30RS-7A FM30RS-8A FM30RS-10A FM30RS-13A   air compressor portableChina supplier Gardner Denver Gd Oil Lubricated Screw Air Compressor Variable Speed VSD 30kw FM30RS FM 30kw FM30RS-7A FM30RS-8A FM30RS-10A FM30RS-13A   air compressor portable
editor by CX 2023-10-23